
DII.3003.IRIX62.PG-1

Defense Information Infrastructure (DII)

Common Operating Environment (COE)

Version 3.0.0.3

Programming Guide (IRIX 6.2)

October 14, 1997

Prepared for:

Defense Information Systems Agency

Prepared by:

Inter-National Research Institute (INRI)
12200 Sunrise Valley Drive, Suite 300

Reston, Virginia 20191

DII.3003.IRIX62.PG-1

October 14, 1997 i

Table of Contents

Preface . 1

1. Writing Programs Using the COE Tools . 3
1.1 Overview . 3
1.2 Referenced Documents . 4

2. Application Development Overview . 5
2.1 Writing Your Application with the DII COE APIs . 5
2.2 Building Your Application with the DII COE APIs . 6
2.3 Running Your Application . 7

3. Printer Overview . 9
3.1 COE Print Service . 9
3.2 Configuring a New Printer for the DII COE API . 9

4. Segment Development . 13
4.1 Segment Layouts . 13
4.2 COE Tools Overview . 14
4.2.1 Running the COE Tools From the Command Line 14
4.2.2 COE Runtime Tools . 14
4.2.3 COE Developer's Tools . 14
4.3 Building Your Segment . 15
4.3.1 Identifying and Creating Required Subdirectories . 15
4.3.2 Creating or Modifying Required Segment Descriptor Files 16
4.3.3 Installing a Segment . 18
4.4 Customizing Your Segment . 18
4.4.1 Adding Menu Items . 19
4.4.2 Adding Icons . 24
4.4.3 Reserving a Socket . 25
4.4.4 Displaying a Message . 26

Appendix A - Sample Segment Layout . 27

Appendix B - Verifying Segment Syntax and Loading a Segment onto Tape 29
B.1 Running VerifySeg Against the Sample Segment . 30
B.2 Running TestInstall Against the Sample Segment . 30
B.3 Running MakeInstall Against the Sample Segment . 31

Appendix C - Installing Optional Common Desktop Environment Products 33

DII.3003.IRIX62.PG-1

October 14, 1997ii

Appendix D - Security Manager Configuration File . 35
D.1 Character and Field Length Limits . 36
D.2 Scope Restrictions . 36
D.3 UNIX System Limitations . 37

List of Tables

Table 1. Segment Descriptor Files . 16
Table 2. SegInfo Descriptor Sections . 17
Table 3. Account, Group, and Profile Input Field Restrictions . 36
Table 4. Databases a Security Manager May Access . 37

List of Figures

Figure 1. Segment Directory Structure . 13

DII.3003.IRIX62.PG-1

October 14, 1997 1

Preface

The following conventions have been used in this document:

[HELVETICA FONT] Used to indicate keys to be pressed. For example, press
[RETURN].

Courier Font Used to indicate entries to be typed at the keyboard, operating
system commands, titles of windows and dialog boxes, file and
directory names, and screen text. For example, execute the
following command:

tar xvf /dev/rmt/3mn

"Quotation Marks" Used to indicate prompts and messages that appear on the
screen.

Italics Used for emphasis.

DII.3003.IRIX62.PG-1

October 14, 19972

This page intentionally left blank.

DII.3003.IRIX62.PG-1

October 14, 1997 3

1. Writing Programs Using the COE Tools

1.1 Overview

This document provides an introduction to the capabilities of the Defense Information
Infrastructure (DII) Common Operating Environment (COE) Version 3.0.0.3 tools for the
IRIX 6.2 Operating System. These tools consist of a set of runtime tools and a set of developer's
tools.

This document has been designed to help developers start using the DII COE tools. It explains the
basic use of the tools, regardless of whether they are run from a menu or from the command line.
The document consists of the following sections and appendices:

Section/Appendix Page

Application Development Overview
Provides an overview of how to develop an application using DII COE
Application Programmer Interfaces (APIs).

5

Printer Overview
Describes the COE Printer API, which provides a simple,
platform-independent method for COE applications to print text and graphics
data.

9

Segment Development
Discusses the different types of segments and the process of segment creation.

13

Sample Segment Layout
Describes how to install the TstSeg sample segment, which can be used to test
segment installation and execution.

27

Verifying Segment Syntax and Loading a Segment onto Tape
Provides examples of how to convert a segment to the DII COE Integration
and Runtime Specification segment format, verify segment syntax, temporarily
install a segment, and load a segment onto an installation tape.

29

Installing Optional Common Desktop Environment Products
Describes how to load optional Common Desktop Environment (CDE)
products.

33

Security Manager Configuration File
Describes the character and field length limits, the scope restrictions, and
UNIX system limitations when creating accounts and groups in Security
Manager.

35

Descriptions assume familiarity with the C programming language and with the UNIX
development environment.

DII.3003.IRIX62.PG-1

October 14, 19974

1.2 Referenced Documents

The following documents are referenced in this programming guide:

C Defense Information Infrastructure (DII) Common Operating Environment (COE)
Integration and Runtime Specification Version 2.0, DII COE I&RTS:Rev 2.0,
Inter-National Research Institute (INRI), October 23, 1995

C Defense Information Infrastructure (DII) Common Operating Environment (COE)
Integration and Runtime Specification Version 3.0, DII COE I&RTS:Rev 3.0,
Inter-National Research Institute (INRI), July 1997

C Defense Information Infrastructure (DII) Common Operating Environment (COE)
Version 3.0.0.3 Application Programmer Interface (API) Reference Guide (IRIX 6.2),
DII.3003.IRIX62.RG-1, Inter-National Research Institute (INRI), October 14, 1997.

DII.3003.IRIX62.PG-1

October 14, 1997 5

2. Application Development Overview

Developers may require access to public APIs to ensure an application complies with the DII
COE Integration and Runtime Specification Version 2.0 and the DII COE Integration and
Runtime Specification Version 3.0. To use the public APIs, developers must compile and link the
application with the libraries and header files provided in the Developer’s Toolkit. Remember that
your DII_DEV directory and Motif include files and libraries may reside in a different location
than in the example compile statements. Public APIs are documented in the DII COE API
Reference Guide (IRIX 6.2).

2.1 Writing Your Application with the DII COE APIs

To access the DII COE tools through the provided APIs, you must include the following header
in your application:

#include <DIITools.h>

The standard location for the Developer's Toolkit header is:

DII_DEV/include

The following is an example of using the DII COE COEAskUser tool, which is used to display a
question and two possible responses to the user. After the user chooses a response, the response
is returned.

/*
 To build this routine use the following command(substitute your
 location for the DII_DEV directory, Motif libraries and includes) :
HP:
 cc -Aa -o COEAskUser_example COEAskUser_example.c -I/h/DII_DEV/include
 -I/usr/include/Motif1.2 -I/usr/include/X11R5 -L/h/DII_DEV/libs
 -lCOETools -lCOE -lPrintClient -L/usr/lib/X11R5 -L/usr/lib/Motif1.2
 -lXm -lXt -lX11

SOLARIS:
 gcc -o COEAskUser_example COEAskUser_example.c -I/h/DII_DEV/include
 -I/usr/include/Motif1.2 -I/usr/openwin/include -L/h/DII_DEV/libs
 -lCOETools -lCOE -lPrintClient -L/usr/openwin/lib -L/usr/lib/Motif1.2
 -lXm -lXt -lX11 -lgen

SGI:
 cc -xansi -o COEAskUser_example COEAskUser_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lCOETools -lCOE
 -lPrintClient -lXm -lXt -lX11

DII.3003.IRIX62.PG-1

October 14, 19976

NT:
 In your compile environment, make sure your include file path
 includes DII_DEV\include and your library path includes DII_DEV\libs.
 Link COEUserPrompts.lib during compilation. (The COEUserPrompts.dll
 will be required during execution.)
*/
#include <stdio.h>
#include <DIITools.h>

/******************************/
/* COEAskUser_example */
/******************************/
int main(int argc, char *argv[])
{
 char b1_lab[] = "MY_YES";
 char b2_lab[] = "MY_NO";
 char message[]="This is my test Message";
 int ret_val;

/* Call DII/COE Library Function */
ret_val = COEAskUser(message, b1_lab, b2_lab);

return(ret_val);
}

2.2 Building Your Application with the DII COE APIs

To build your application with DII COE APIs, you must link your application with the
libCOETools.a, libCOE.a , and libPrintClient libraries, which are on the DII COE
Developer's Toolkit tape.

The standard location for the Developer's Toolkit libraries is:

DII_DEV/libs

The actual compile and link statement for an application that uses DII COE APIs should resemble
the following (substitute your location for the DII_DEV directory and Motif libraries and include
files):

 cc -xansi -o COEAskUser_example COEAskUser_example.c
 -I/h/DII_DEV/include -L/h/DII_DEV/libs -lCOETools -lCOE
 -lPrintClient -lXm -lXt -lX11

where COEAskUser_example is the name of the program being compiled.

DII.3003.IRIX62.PG-1

October 14, 1997 7

2.3 Running Your Application

The DII COE provides the foundation and infrastructure in which one or more applications run.
To operate under the COE, applications must be formatted properly as segments. The segment is
the basic building block of the COE runtime environment. A segment is a collection of one or
more Computer Software Configuration Items (CSCIs) that are managed most conveniently as a
unit. Segments generally are defined to keep related CSCIs together so functionality easily may be
included or excluded. All applications must be put in the DII COE runtime environment segment
format to be installed onto a DII COE-compliant machine.

Once an application has been put in the proper segment format, the segment can be installed in a
disciplined way through instructions contained in files provided with each segment. These files are
called segment descriptor files and are contained in a special subdirectory, SegDescrip, which is
called the segment descriptor subdirectory. Installation tools process the segment descriptor files
to create a carefully controlled approach to adding or deleting segments to or from the system.

Once installed, your application can be invoked in the DII COE environment in two ways:
(1) running your application from a command shell window or (2) invoking your application from
an icon. The easiest way to test your application is to invoke it in a command shell window. This
gives you easy access to your application for debugging purposes and allows you to check any
diagnostic information your application is generating. Section 4.4, Customizing Your Segment,
describes how to set up your application to be invoked as a menu item or as an icon.

DII.3003.IRIX62.PG-1

October 14, 19978

This page intentionally left blank.

DII.3003.IRIX62.PG-1

October 14, 1997 9

3. Printer Overview

3.1 COE Print Service

The DII COE Printer API provides a simple, platform-independent method for DII COE
applications to print text and graphics data. The API currently consists of 12 C language functions
and 3 executable programs.

The COE print service is based on a client-server architecture. Each printer is managed by a single
workstation that acts as the server for all print requests for that printer. The print server handles
access controls, queue management, and error notification.

Every COE workstation runs a "printer agent," which facilitates communication between client
applications and the print server. All printer API functions and executable programs use this
printer agent.

3.2 Configuring a New Printer for the DII COE API

The DII COE Printer API consists of the following 12 C language low-level and high-level
functions.

NOTE: Low-level and high-level functions should not be used within the same application.

Low-level Functions

C int close_printer(char **file_name, FILE **file_pointer);

C int get_printer_descriptions(char **c_printer_description);

C int get_printer_name(char **c_printer_name);

C int get_printer_type(char **c_printer_type);

C int open_printer(char *xcp_security_level,
int xi_line_length,
int xi_page_length,
int xi_line_spacing,
int xi_indent,

 char **xcp_file_name,
FILE **xfp);

C int page_break(FILE **xfp);

C int write_printer(char **c_string, FILE *fp);

C int write_printer_array(char **c_string, FILE *fp);

DII.3003.IRIX62.PG-1

October 14, 199710

High-level Functions

C VDirectPrintFile(char *filename, int prt_rec)

C VDirectPrintMsg(**msg_array, int nlines)

C VPrintFile(char *filename)

C VPrintMsg(char **msg_array, int nlines)

The close_printer function is used to conclude a print job and send the data to the printer. If
close_printer is not called, the print job will not print.

The get_printer_descriptions , get_printer_name, and get_printer_type functions allow
an application to retrieve the name, the type, and a description of the current default printer. All
three functions return a string value via the pointer that was passed as an argument to the
function. The printer name and description are simple text fields. The printer type is "ASCII",
"HPCL", or "PostScript".

The open_printer function is used to send text data to a printer. It establishes a print context,
including the security level, line length, page length, line spacing, and indentation for the print job.
It returns a file pointer through its last argument. This file pointer is used for all subsequent
actions on this print job.

The page_break function is used to indicate that the lines of text that follow should begin at the
top of the next page.

The write_printer and write_printer_array functions are used to send the actual text data
to a previously opened printer context.

The VDirectPrintFile and VPrintFile functions are used to print text data from a file on
disk. The VDirectPrintMsg and VPrintMsg functions are used to print text data from an array of
strings in memory. All four functions generate a security banner at the top and bottom of each
output page. On completion, these functions return the internal number of the selected printer or
they return -1 if the user canceled the job or if an error occurred.

The VPrintFile and VPrintMsg functions provide the user with a Print Chooser window,
which allows the user to select the destination printer. The VDirectPrintMsg function bypasses
the Print Chooser window and prints directly to the COE default printer. The
VDirectPrintFile function bypasses the Print Chooser window and prints directly to the
specified printer. The printer number is specified as a return value from a previous VPrintXXX or
VDirectPrintXXX function call or as -1 for the COE default printer.

DII.3003.IRIX62.PG-1

October 14, 1997 11

The DII COE Printer API also consists of the following three executable programs. The
executable programs provide the same functionality as the C functions of the same name.

C EM_get_current_printer_name

C EM_get_current_printer_type

C EM_get_current_printer_desc

 Sample printer programs are shown below.

Sample Printer Programs

#include <stdio.h>

#include <Printer/PrintAPI.h>

/* Number of lines in text message */
#define TEXT_LINES 6

static char *PrintMessage[TEXT_LINES] =
{
 "Test message, line 1",
 "Test message, line 2",
 "Test message, line 3",
 "Test message, line 4",
 "Test message, line 5",
 NULL
};

int main(int argc, char *argv[])
{
 if (VPrintMsg(PrintMessage, TEXT_LINES) == -1)
 {
 fprintf(stderr, "Printer error.\n");
 }
}
--

DII.3003.IRIX62.PG-1

October 14, 199712

#include <stdio.h>

#include <Printer/PrintAPI.h>

int main(int argc, char *argv[])
{
 int printer_num;

 /* Print a local text file using the system default printer */
 printer_num = VDirectPrintFile("textfile1", -1);
 if (printer_num == -1)

 {
 fprintf(stderr, "Printer error.\n");
 exit(1);
 }

 /* Print the system hosts file using a user-selected printer */
 printer_num = VPrintFile("/etc/hosts");
 if (printer_num == -1)
 {
 fprintf(stderr, "Printer error.\n");
 exit(2);
 }

 if (printer_num != -1)
 {
 /* Print another text file to the printer that the user just
 selected */
 printer_num = VDirectPrintFile("textfile2", printer_num);
 if (printer_num == -1)
 {
 fprintf(stderr, "Printer error.\n");
 exit(3);
 }
 }
}

Required for segment submission
Required for segments with public APIs

+
*

Seg

h

VSOutput TestSuite

IntgNotes

Icons Menus fonts app-defaults

Integ+dataSegDescrip Scripts bin lib*include*man*

DII.3003.IRIX62.PG-1

October 14, 1997 13

4. Segment Development
The following section discusses the different types of segments and the process of segment
creation. Refer to Section 5.0, Runtime Environment, of the DII COE Integration and Runtime
Specification for a more detailed explanation of segments.

4.1 Segment Layouts

In the DII COE approach, each segment is assigned a unique, self-contained subdirectory. DII
COE compliance mandates specific subdirectories and files underneath a segment directory. These
subdirectories and files are shown in Figure 1. Six segment types exist: Account Group, COTS
(Commercial Off-the-Shelf), Data, Database, Software, and Patch. The precise subdirectories and
files required depend on the segment type. For example, a Scripts subdirectory is required for an
Account Group segment. The Scripts subdirectory normally contains scripts such as .cshrc,
.xsession, and .login. These scripts serve as a template for establishing a basic runtime
environment. For software segments, the Scripts subdirectory contains environmental extension
files. Some of the subdirectories shown in Figure 1 are required only for segment submission and
are not delivered to an operational site.

Figure 1. Segment Directory Structure

The following runtime subdirectories normally are required, depending on the segment type:
(1) SegDescrip, which is the directory containing segment descriptor files; (2) Scripts, which is
the directory containing script files; (3) bin, which is the directory containing executable
programs for the segment; and (4) data, which is the subdirectory containing static data items,
such as menu items, that are unique to the segment, but that will be the same for all users on all
workstations.

The SegDescrip directory is required for every segment because it contains the installation
instructions for the segment. A segment cannot modify files or resources outside its assigned
directory. Files outside a segment's directory are called community files. COE tools coordinate
modification of all community files at installation time, while APIs for the segments that own the
data are used at runtime. Refer to Section 5.5, Segment Descriptors, of the DII COE Integration
and Runtime Specification for a detailed explanation of SegDescrip files.
4.2 COE Tools Overview

DII.3003.IRIX62.PG-1

October 14, 199714

The COE tools were constructed to aid developers in the creation and ultimate installation of DII
COE segments. All tools can be run from the command line, and some can be run from other code
using published APIs.

4.2.1 Running the COE Tools From the Command Line

This section provides a brief overview of running the COE tools from the command line.
Reference the following sources for detailed information about the COE tools: Appendix C, COE
Tools, of the DII COE Integration and Runtime Specification; the Developer's Toolkit release
notes; and the help page provided by the tools.

When run from the command line, the tools are designed to run interactively and accept one or
more command line parameters.

The tools are used to communicate with the outside world in two ways. First, the tools use the
exit function to set the UNIX status environment variable. The status return value is set to 0
for normal tool completion or to -1 if an error occurs. A status return value greater than 0
indicates a completion code that is tool specific.

Second, the tools use stdin and stdout and thus support input and output redirection.
Redirecting stdin allows the tools to receive input from a file or from another program, while
redirecting stdout allows the tools to provide output to other programs.

NOTE: Redirecting stdin is not always convenient. The -R command line parameter allows a
tool to read input from a response file instead of from stdin.

For example, the COEPrompt tool displays a message and allows the user to type a response. The
user's response, then, is written to stdout. The following statement shows how this tool can be
used to ask the user to enter the name of a file:

COEPrompt "Enter Filename" | MyProg

Or, the following statement can be used to write the results to a file:

COEPrompt "Enter Filename" > /tmp/tempfile

4.2.2 COE Runtime Tools

Reference Appendix C of the DII COE Integration and Runtime Specification for a complete
description of DII COE runtime tools.

4.2.3 COE Developer's Tools

The MakeAttribs, TestInstall, and TestRemove tools must be run as the root user because they
modify files the user may not own. ConvertSeg, TimeStamp, VerifySeg, and VerUpdate should
also be run as the root user, although it is not mandatory. These four tools require the user to
have write permission to the segment against which the tool was executed.

See Appendix C, COE Tools, of the DII COE Integration and Runtime Specification for a
complete description of the DII COE developer's tools.

DII.3003.IRIX62.PG-1

October 14, 1997 15

4.3 Building Your Segment

A segment must be built in a disciplined way using instructions contained in files provided with
each segment. These files are contained in a special directory, SegDescrip, which is the segment
descriptor subdirectory.

This section describes a process to turn an application into a segment so it can be a part of the DII
COE. As described earlier, a segment is a collection of one or more CSCIs most conveniently
managed as a unit.

4.3.1 Identifying and Creating Required Subdirectories

There are six segment types: Account Group, COTS, Data, Database, Software, and Patch. Each
segment type is assigned its own subdirectory. Precise files depend on the segment type.

The following subdirectories normally are required:

Subdirectory Description

SegDescrip Subdirectory containing segment descriptor files. This directory is
always required for every segment and contains the installation
instructions for the segment. A segment is not allowed to modify any
files directly for resources it does not own; in other words, a segment
cannot modify files or resources outside an assigned directory. The
DII COE tools coordinate the modification of all community files at
installation time, while APIs for the segment that owns the data are
used at runtime. This subdirectory contains the installation
instructions for the segment.

Scripts Subdirectory containing script files. This subdirectory will normally
contain scripts such as .cshrc, .xsession, and .login. These
scripts serve as a template for establishing a runtime environment.

bin Executable programs for the segment. These files can be the result of
a compiled program or as a result of shell scripts, depending on the
type of segment.

data Subdirectory for static data items, such as menu items, that are
unique to the segment but that will be the same for all users on all
workstations.

See Sections 5.0-5.5 of the DII COE Integration and Runtime Specification for a detailed
explanation of segment directory layout and a description of each SegDescrip file.

DII.3003.IRIX62.PG-1

October 14, 199716

4.3.2 Creating or Modifying Required Segment Descriptor Files

Segment descriptor files are the key to providing seamless and coordinated systems integration
across all segments. Reference Table 1 to determine the descriptor files required for each segment
type. For example, the AcctGrp segment requires ReleaseNotes, SegInfo, SegName, and
VERSION descriptor files in the SegDescrip directory. Some segment descriptor information is
provided within the files listed in Table 1.

NOTE: In Table 1, Aggregate and COE Comp are segment attributes that can be associated
with any type of segment.

File Grp Aggregate Comp COTS Data DB S/W Patch
Acct COE

DEINSTALL O O O O O O O O

FileAttribs O O O O O O O O

Installed I I I I I I I I

PostInstall O O O O O O O R

PreInstall O O O O O O O O

PreMakeInst O O O O O O O O

ReleaseNotes R R R R R R R R

SegChecksum I I I I I I I I

SegInfo R R R R R R R R

SegName R R R R R R R R

Validated I I I I I I I I

VERSION R R R R R R R R

R - Required O - Optional I - Created by Integrator or Installation
Software

Table 1. Segment Descriptor Files

DII.3003.IRIX62.PG-1

October 14, 1997 17

Other segment descriptor information is arranged within subsections of the SegInfo file. As with
the descriptor files themselves, some sections of the SegInfo file are required and others are
optional depending on the type of segment. Table 2 defines the required and optional sections for
each segment type.

Section Grp Aggregate Comp COTS Data DB S/W Patch
Acct COE

AcctGroup R O N N N N N N

COEServices O O O O O O O O

Community O O O O O O O O

Comm.deinstall O O O O O O O O

Compat O O O O O O O N

Conflicts O O O O O O O O

Data N N N N R N N N

Database X X X X X X X X

Direct O O O O O O O O

FilesList O O O R O O O O

Hardware R R R R R R R R

Icons R O N O N N O O

Menus R O N O N N O O

ModName * * * * * * * *

ModVerify * * * * * * * *

Network N N O N N N N N

Permissions O O N N N N O O

Processes O O O O N N O O

ReqrdScripts R O O N N N O N

Requires O O O O O O O O

Security R R R R R R R R

SegType * * * * * * * *

 R - Required O - Optional N - Not Applicable X - Reserved for Future * - Obsolete

Table 2. SegInfo Descriptor Sections

DII.3003.IRIX62.PG-1

October 14, 199718

4.3.3 Installing a Segment

Follow the procedures below to install a segment after it has been created.

Run VerifySeg

The VerifySeg tool must be run during the development phase to ensure segments use segment
descriptor files properly. Run the VerifySeg tool whenever a segment is created or modified.
When VerifySeg is run to verify a segment, a Validated file is created. This file is required to
create the installation media or to use the TestInstall tool on the segment. Reference Appendix C,
COE Tools, of the DII COE Integration and Runtime Specification for further information about
using VerifySeg.

Run TestInstall

Executing the TestInstall tool is not a mandatory step in the installation process, but it is
recommended. TestInstall simulates an installation on the developer's workstation before actual
installation. The workstation must have the DII COE kernel installed before running TestInstall.
Reference Appendix C, COE Tools, of the DII COE Integration and Runtime Specification for
further information about using TestInstall.

Run MakeInstall

The MakeInstall tool is used to write one or more segments to an installation media and to
package the segment(s) for distribution. MakeInstall checks if VerifySeg has been run successfully
on each of the segments and aborts with an error if it has not. Reference Appendix C, COE Tools,
of the DII COE Integration and Runtime Specification for further information about using
MakeInstall.

Run COEInstaller

The COEInstaller tool installs a segment from tape, disk, or other electronic media. Reference
Appendix C, COE Tools, of the DII COE Integration and Runtime Specification for further
information about using the COEInstaller.

4.4 Customizing Your Segment

Most properly designed segments will not require any extensions to the COE, although the
segments may need to add menu items and icons. Some segments may need to add special
extensions such as sockets. This subsection describes how to add menu items, icons, and special
extensions.

DII.3003.IRIX62.PG-1

October 14, 1997 19

4.4.1 Adding Menu Items

Menu Entry Format

The Menu Descriptor in the SegInfo file is used to specify the name of the segment’s menu file
and the name of the affected segment’s menu file.

The menu bar, pull-down menus, and cascade menus, as well as the menu items they contain, are
built according to the entries in the named menu file. The format of the entries is in ASCII with
colon-separated fields. The colons are used as delimiters, and spaces are allowed in the fields.
Each line ends in a colon with no extra data. A # symbol in the first column of a line denotes a
comment line. Comment entries may be placed anywhere in the entry and are not processed by the
parser.

Valid keywords are PDMENU, PDMENUEND, ITEM, PRMENU, CASCADE, CASCADEEND, APPEND,
APPENDEND, and SEPARATOR. You may use any or all of these keywords. For example, if your
menu does not have separator lines, your Menu Description Entry will not contain a SEPARATOR
keyword.

Each keyword is described in the following paragraphs:

A PDMENU line contains the following elements:

PDMENU: name : enable flag : id # :

PDMENU Keyword that indicates the start of a pull-down menu.

name Text used to name the menu. The menu name is displayed on the menu
bar.

enable flag Integer value that indicates whether a menu is enabled or disabled. The
enable flag is 1 if a menu is enabled or 0 if it is disabled. A disabled menu
means that no options under that pull-down menu can be selected.

id# Optional integer value that provides a unique ID number for the menu.
The PDMENU id# value must be unique within the menu description file.
An absolute value may be provided. However, the id# field should be left
empty so that relative numbering is used by default.

With relative numbering, an id# of R1 (or leaving the field blank) sets the
menu's ID number to 1 plus the id# of the last menu processed. An id# of
R2 sets the menu's ID number to 2 plus the id# of the last menu
processed.

The following is an example of a PDMENU line:

PDMENU: Map Options : 1 : R1 :

DII.3003.IRIX62.PG-1

October 14, 199720

A PDMENUEND line contains the following element:

PDMENUEND:

PDMENUEND Optional keyword that indicates the end of a group of pull-down menu
items. If PDMENUEND is not used to delimit a group of menu items, the
group is presumed to end when the next keyword (other than ITEM or
PRMENU) is encountered.

The following is an example of a PDMENUEND line:

PDMENUEND:

An ITEM line contains the following elements:

ITEM: name : command : execution type : enable flag : # instances : id# :
check value : security char : autolog flag : print flag : disk flag :

ITEM Keyword that indicates a menu item description line.

name Text used to name the menu item. The item name is displayed in the
pull-down menu.

command Program with space-separated arguments that is launched if the menu item
type is a program. Otherwise, the menu item is called as an application
callback. Because callback functions must be linked into the same
executable as the menu bar, applications cannot use callbacks when adding
items to the system menu bar.

execution
type Integer value that indicates how to execute a command, as follows:

1 = executable program
2 = void callback function with no parameters (not yet

implemented)
3 = Motif callback function (not yet implemented).

enable flag Integer value that indicates if a menu item is enabled or disabled. The
enable flag is 1 if a menu item is enabled or 0 if it is disabled. A disabled
menu item means that the option cannot be selected.

instances Integer value that is used to set the maximum number of times the item
can be executed simultaneously.

id# Optional integer value that provides a unique ID number for the menu
item. Each ITEM id# entry must be unique within a PDMENU listing. (ITEM
entries in a PRMENU must be unique within that PRMENU.) Refer to the id#
description under the PDMENU keyword listing.

DII.3003.IRIX62.PG-1

October 14, 1997 21

check value Optional integer value that sets the star and check annotations of a menu
item. The possible values are:

0 = no annotation (default)
1 = visible check mark
2 = check mark, but not visible
3 = visible star
4 = star member, but not visible.

This element is not yet fully implemented.
security
char

autolog
flag

Optional character value that is used to determine the lowest security
level under which a menu item can be classified. Valid settings are:

N = No Classification
U = Unclassified (default)
C = Confidential
S = Secret
T = Top Secret.

Optional character value, T or F, used to indicate if the command should
be logged automatically. This element is not yet fully implemented.

print flag Optional character value, T or F, used to indicate if the command should
have a print capability. This element is not yet fully implemented.

disk flag Optional character value, T or F, used to indicate if the command should
have disk access capability. This element is not yet fully implemented.

The following is an example of an ITEM line:

ITEM: Netscape : Netscape.. : 1 : 1 : 1 : R1 : 0 : T : F : F : F :

A PRMENU line contains the following elements:

PRMENU: name : enable flag : id# :

PRMENU Keyword that indicates a cascading menu button. It is used to mark where
a cascade menu is to be connected to an upper-level menu.

name Text used to name the cascade menu with which to connect. The PRMENU
name is displayed in the pull-down menu.

enable flag Integer value that indicates if a cascade menu is enabled or disabled. The
enable flag is 1 if a cascade menu is enabled or 0 if it is disabled. A
disabled cascade menu means that menu options on the cascade menu
cannot be selected.

id# Optional integer value that provides a unique ID number for the cascading
menu. Each PRMENU id# must be unique within a PDMENU listing. Refer to
the id# entry under the PDMENU keyword listing.

The following is an example of a PRMENU line:

DII.3003.IRIX62.PG-1

October 14, 199722

PRMENU: Software : 1 : R1 :

A CASCADE line contains the following element:

CASCADE: name :

CASCADE Keyword that indicates the start of a cascade menu. The cascade menu
connects to the PRMENU entry of the same name.

name Text used to name a cascade menu. The name is used to attach a cascade
menu to a cascading button. This name must be the same as the name field
in the PRMENU entry.

The following is an example of a CASCADE line:

CASCADE: Software :

A CASCADEEND line contains the following element:

CASCADEEND:

CASCADEEND Optional keyword that indicates the end of a group of cascade menu
items. If CASCADEEND is not used to delimit a group of menu items, the
group is presumed to end when the next keyword (other than ITEM or
PRMENU) is encountered.

The following is an example of a CASCADEEND line:

CASCADEEND:

An APPEND line contains the following elements:

APPEND: name :

APPEND Keyword that indicates the start of a group of items to append to an
existing menu. The menu will be created if it does not exist already. The
group is appended to the PDMENU or CASCADE entry of the same name.

name Text used to select the menu to which a group of items is appended.

The following is an example of an APPEND line:

APPEND: Options :

DII.3003.IRIX62.PG-1

October 14, 1997 23

An APPENDEND line contains the following element:

APPENDEND:

APPENDEND Optional keyword that indicates the end of a group of menu items to be
appended to an existing menu. If APPENDEND is not used to delimit a group
of menu items, the group is presumed to end when the next keyword
(other than ITEM or PRMENU) is encountered.

The following is an example of an APPENDEND line:
APPENDEND:

A SEPARATOR line contains the following element:

SEPARATOR:

SEPARATOR Optional keyword that indicates that a Motif separator widget is to be
placed in a menu at the point where the keyword occurs.

The following is an example of a SEPARATOR line:

SEPARATOR:

Example of Adding a Menu Item

To add menu items, include the Menus Descriptor in the SegInfo Segment Descriptor file.
Specify the Menu file you use wish to load and the Menu file you wish to update. The Menu file you
wish to load should be located in Menus directory of the segment. If your segment name is
TstSeg, the file would be located in the TstSeg/data/Menus directory. The following example
will add the Test Program menu item to the Software menu under the SysAdm account group
by updating the SA_Default.main menu file.

The following file changes must be made to ensure the TSTCOEAskUser_example program is
executed from the Software menu, Test Program option:

TstSeg/SegDescrip/SegInfo entry:

[Menus]
TstSegMenu:SA_Default.main

TstSeg/data/Menus/TstSegMenu entry:

#--------------------
Software Menu Items
#--------------------
APPEND :Software
ITEM :Test Program :TSTCOEAskUser_example:1:1:1:R1
APPENDEND :

DII.3003.IRIX62.PG-1

October 14, 199724

The $SEGMENT keyword must be used in the SegName Segment Descriptor file to specify the name
of the affected segment. In this case it is System Administration .

#
SegName For the TstSeg segment
#
$TYPE:SOFTWARE
$NAME:Test Segment
$PREFIX:TST
$SEGMENT:System Administration:SA:/h/AcctGrps/SysAdm

4.4.2 Adding Icons

Icon Entry Format

The Icon Description Entry contains information on all icon-based processes. The entry, or set of
entries, to be used is passed to the CDE. The entry must be available to the CDE at startup as part
of the base set of icons.

Icons are built using the icon section in the SegInfo file. The entry is a specially formatted icon
description that has colon-separated fields. The colons are used as delimiters, and spaces are
allowed in the fields. Each line ends in a colon with no extra data. A # symbol in the first column
of a line denotes a comment line. Comment entries may be placed anywhere in the file and are not
processed by the parser.

The format of the icon entry is as follows:

ICON file : affected icon file

The affected icon file contains information about both the icon and the executable. The format of
the file is as follows:

Window Title : Icon Path : Executable Name : Comments

(where Window Title is the title placed in the application window, Icon Path is the full path to
the pixmap/xpm image, Executable Name is the name of the executable to be launched by the
menu program, and Comments is an optional comment line)

An example of an affected icon file is as follows:

Edit Profiles : /h/AcctGrps/SysAdm/data/Icons/Prof.img:EditProfiles : This
is the EditProfiles icon

DII.3003.IRIX62.PG-1

October 14, 1997 25

Example of Adding an Icon

To add an icon, include the Icons Descriptor in the SegInfo Segment Descriptor file. Specify the
icon file you wish to load and the icon file you wish to update. The icon file you wish to load
should be located under the TstSeg/data/Icons directory, assuming the segment’s directory
name is TstSeg. This example will add the Test Program icon to the SysAdm account group.
When invoked through the icon, the program TSTCOEAskUser_example will be executed.

TstSeg/SegDescrip/SegInfo entry:

[Icons]
TstSegIcons:SA_Default

TstSeg/data/Icons/TstSegIcon file:

TstSegIcons
#--------------------
Software Icons
#--------------------
Test Program :TestProgramIcon:TSTCOEAskUser_example

Also include the $SEGMENT keyword in the SegName Segment Descriptor file to specify the name
of the affected segment. In this case it is System Administration .

SegName

#
SegName For Test Segment
#
$TYPE:SOFTWARE
$NAME:Test Segment
$PREFIX:TST
$SEGMENT:System Administration:SA:/h/AcctGrps/SysAdm

4.4.3 Reserving a Socket

To add a service, include the COEServices Descriptor in the SegInfo Segment Descriptor file.
Also include the $SERVICES keyword in the SegInfo Segment Descriptor file to specify the
service to be added. If the port number requested is already in use under another name, an error
will be generated.

NOTE: Port numbers in the range 2000-2999 are reserved for DII COE segments.

[COEServices]
#
This is my service to add
#
$SERVICES
irc_ser:3001:upd

DII.3003.IRIX62.PG-1

October 14, 199726

4.4.4 Displaying a Message

This subsection shows an example of how to display a message during the PostInstall process.
Five runtime tools can be used to communicate with a user: COEAskUser, COEInstError,
COEMsg, COEPrompt, and COEPromptPasswd. These tools may be used to display information
to the user or to ask the user a question and, based on the result, perform different actions.

In this example, the user is asked questions using the COEAskUser runtime tool, which is
described in Appendix C, COE Tools, of the DII COE Integration and Runtime Specification.

#!/bin/csh
#===
PostInstall Tst 1.0 1/95
#
Routine to perform necessary actions after TstSeg has been
loaded.
#===
COEAskUser -B "RED LAN" "BLUE LAN" "Which LAN Will You Be Connecting To"

if ($status == 1) then
 COEAskUser -YN "On The RED LAN Do You Want Port #66?
#
Perform Some Action Based On Results
#
 exit(0)
else if ($status == 0) then
 COEAskUser -YN "On The BLUE LAN Do You Want Port #6?
#
Perform Some Action Based On Results
#
 exit(0)
else
 COEMsg "Invalid Return Status"
 exit(-1)
endif
exit(0)

DII.3003.IRIX62.PG-1

October 14, 1997 27

Appendix A - Sample Segment Layout
This appendix shows a layout of a software segment, called TstSeg, which is a basic example of a
segment. In Appendix B, Verifying Segment Syntax and Loading a Segment onto Tape, TstSeg
will pass the checks performed by the VerifySeg COE tool. TstSeg will add the Test Program
menu item to the SysAdm account group. When invoked through the menu item, the
TSTCOEAskUser_example program will be executed.

Refer to Appendix B, Verifying Segment Syntax and Loading a Segment onto Tape, for
instructions on how to validate the TstSeg segment and load the segment onto tape.

The layout of the sample segment is:

TstSeg:
./ ../ Scripts/ SegDescrip/ bin/ data/

TstSeg/Scripts:
./ ../ .cshrc.TST

TstSeg/SegDescrip:
./ ../ DEINSTALL ReleaseNotes SegInfo SegName VERSION

TstSeg/bin:
./ ../ TSTCOEAskUser_example

TstSeg/data:
./ ../ Menus/

TstSeg/data/Menus:
./ ../ TstSegMenu

NOTE: After the segment has passed VerifySeg, a validated file will be added to the
SegDescrip directory.

The Scripts directory contains the following:

.cshrc.TST
#==
Define required runtime environment variables
#==
setenv TST_HOME /h/TstSeg
#
Add bin to path
#
set path=($path $TST_HOME/bin)

The SegDescrip directory contains the following:

DEINSTALL
!/bin/csh
#
Deinstall For TstSeg
#

NOTE: The existence of the DEINSTALL descriptor, even if it does not contain any
instructions, allows the segment to be deinstalled.

ReleaseNotes
#
Release Notes For TstSeg
#

DII.3003.IRIX62.PG-1

October 14, 199728

This is my Test Segment For Example Purposes

SegInfo
#
SegInfo File For TstSeg
#

[Hardware]
$CPU:SGI
$MEMORY:200
$DISK:131

[Menus]
TstSegMenu:SA_Default.main

[Reqrd Scripts]
.cshrc:.cshrc.TST

[Security]
UNCLASS

SegName
#
SegName For Test Segment
#
$TYPE:SOFTWARE
$NAME:Test Segment
$PREFIX:TST
$SEGMENT:System Administration:SA:/h/AcctGrps/SysAdm

TstSegMenu
#-------------------------
Software Menu Items
#-------------------------
APPEND :Software
ITEM :Test Program :TSTCOEAskUser_example:1:1:1:R1
APPENDEND:

VERSION
#
Version Number For TstSeg
#
1.0.0.1 : 05/31/96: 10:08

DII.3003.IRIX62.PG-1

October 14, 1997 29

Appendix B - Verifying Segment Syntax and
Loading a Segment onto Tape

This appendix provides examples of how to convert a segment from the Joint Maritime Command
Information System (JMCIS) format to the DII COE Integration and Runtime Specification
segment format, verify segment syntax, install a segment temporarily, and load a segment onto an
installation tape. The segment verification and loading process involves the following steps:

STEP 1: Run the VerifySeg tool. Run VerifySeg to validate that the segment conforms to
the rules for defining a segment (i.e., to verify the segment syntax).

STEP 2: Run the TestInstall tool. Run TestInstall against the sample segment to install the
segment temporarily. This step is optional; if you choose not to run TestInstall,
proceed to STEP 3.

STEP 3: Run the MakeInstall tool. Run MakeInstall to load the segment onto an
installation tape. After the segment is loaded onto tape, it is ready to be installed
using the Segment Installer option from the System Administration menu bar.

Subsections B.1-B.3 show how to perform these steps against the TstSeg sample software
segment, which is described in Appendix A, Sample Segment Layout.

NOTE: In the subsections below, the VerifySeg, TestInstall, and MakeInstall tools are being
run against the TstSeg sample segment. The output of each command will vary depending on
the segment being converted. Note the following severity indicators:

(F) indicates a FATAL ERROR (D) indicates a DEBUG statement
(W) indicates a WARNING (V) indicates a VERBOSE statement
(E) indicates an ERROR (O) indicates an ECHO statement

NOTE: In the following subsections, boldface text indicates information that the user must
input.

DII.3003.IRIX62.PG-1

October 14, 199730

B.1 Running VerifySeg Against the Sample Segment
**

VerifySeg -p /home2/TestSegs TstSeg

Results of verification (/home2/TestSegs/TstSeg) :Totals

Errors: 0
Warnings: 0
**

B.2 Running TestInstall Against the Sample Segment
**

TestInstall -p /home2/TestSegs TstSeg

**

TestInstall - Version 1.0.0.7

**

The following options have been selected:

**

Print warning messages.

**

Segments to be TestInstalled:

**

Segment: TstSeg Path: /home2/TestSegs

*************WARNING*************

TestInstall may modify COE files already in use. This may cause unpredictable
results if COE processes are already running. Make sure no other COE processes
are running before using TestInstall.

Do you want to continue with the TestInstall? (y/n): y
Processing TstSeg
The segment /home2/TestSegs/TstSeg already uses the DII COE standard.
ConvertSeg is not required.

Successfully ran preprocessor on segment TstSeg

Do you want to run PreInstall for Segment TstSeg? (y/n): y
Calling PreInstall Script
effective 0 real 0

Do you want to run PostInstall for Segment TstSeg? (y/n): y
effective 0 real 0
Successful Installation of TstSeg

**

DII.3003.IRIX62.PG-1

October 14, 1997 31

B.3 Running MakeInstall Against the Sample Segment
**

MakeInstall -p /home2/TestSegs TstSeg

1 Write to disk
2 /dev/rmt/3mn 3 MBytes (HP DAT DT-30)
3 /dev/rmt/3mn 680 MBytes (HP DAT DT-30)
4 /dev/rmt/3mn 1360 MBytes (HP DAT DT-60)
5 /dev/rmt/3mn 2048 MBytes (HP DAT DT-90)
6 /dev/rmt/3mn 2730 MBytes (HP DAT DT-120)
7 /dev/rmt/3mn 4096 MBytes (HP DAT DT-210)
8 /dev/rmt/stn 60 MBytes (HP 1/4 inch DC600 Cartridge)
9 /dev/rmt/stn 150 MBytes (HP 1/4 inch DC6150 Cartridge)
10 /dev/rmt/stn 250 MBytes (HP 1/4 inch DC6250 Cartridge)
11 /dev/rmt/stn 525 MBytes (HP 1/4 inch DC6525 Cartridge)
12 /dev/rmt/1mn 1225 MBytes (HP 54M Exabyte)
13 /dev/rmt/1mn 2560 MBytes (HP 112M Exabyte)
14 /dev/nrst0 680 MBytes (Sun DAT DT-30)
15 /dev/nrst0 1360 MBytes (Sun DAT DT-60)
16 /dev/nrst0 2048 MBytes (Sun DAT DT-90)
17 /dev/nrst0 2730 MBytes (Sun DAT DT-120)
18 /dev/nrst0 4096 MBytes (Sun DAT DT-210)
19 /dev/nrst0 60 MBytes (Sun 1/4 inch DC600 Cartridge)
20 /dev/nrst0 150 MBytes (Sun 1/4 inch DC6150 Cartridge)
21 /dev/nrst0 250 MBytes (Sun 1/4 inch DC6250 Cartridge)
22 /dev/nrst0 525 MBytes (Sun 1/4 inch DC6525 Cartridge)
23 /dev/nrst0 1225 MBytes (Sun 54M Exabyte)
24 /dev/nrst0 2560 MBytes (Sun 112M Exabyte)
25 /dev/nrtape 680 Mbytes (SGI DAT DT-30)
26 /dev/nrtape 1360 Mbytes (SGI DAT DT-60)
27 /dev/nrtape 2048 Mbytes (SGI DAT DT-90)
28 /dev/nrtape 2730 Mbytes (SGI DAT DT-120)
29 /dev/nrtape 4096 Mbytes (SGI DAT DT-210)
30 /dev/rmt0.1 1225 Mbytes (IBM 54M Exabyte)
31 /dev/rmt0.1 2560 Mbytes (IBM 112M Exabyte)
32 /dev/nrmt0h 680 Mbytes (DEC DAT DT-30)
33 /dev/nrmt0h 1360 Mbytes (DEC DAT DT-60)
34 /dev/nrmt0h 2048 Mbytes (DEC DAT DT-90)
35 /dev/nrmt0h 2730 Mbytes (DEC DAT DT-120)
36 /dev/nrmt0h 4096 Mbytes (DEC DAT DT-210)
37 Other

Enter device to use (1, 2, etc) or type 'q' to quit. 1
Enter name of the output file or type 'q' to quit. TstSeg

Processing Segment: /home2/TestSegs/TstSeg ...

Enter your name for the Tape Header: John Smith
Enter a serial number for the Tape Header: 1
Enter any desired comment to put in the Tape Header (up to 255 characters):
Test Load of TstSeg

DII.3003.IRIX62.PG-1

October 14, 199732

Tape Index Attr Type Hardware Class Directory (Segment Name - Version)
==
1 1 O S HP U /home2/TestSegs/TstSeg
 Test Segment - 1.0.0.1
==
Attr : PS - Parent Segment CS - Child Segment 0 - Other
Type : A - Acct Group S - Software C - COTS
 D - Data P - Patch
Class: U - Unclassified C - Confidential S - Secret T - Top Secret

Number of segments to write to tape: 1
Space required: 0.114 MByte (including Tape Header and Table of Contents)

**

********* Insert tape #1 *********

Press any key to continue.
0+1 records in.
1+0 records out.

************ DII Install tape completed ************

DII.3003.IRIX62.PG-1

October 14, 1997 33

Appendix C - Installing Optional Common
 Desktop Environment Products
The Common Desktop Environment (CDE) provides windows, workspaces, controls, menus, and
a front panel to help users organize and manage work. Follow the steps below to install optional
CDE products:

STEP 1: Log in. Log in as root.

STEP 2: Insert the CD into the drive. Insert the TriTeal Enterprise Desktop (TED) CD
into the CD drive.

STEP 3: Mount the CD. Mount the CD onto /cdrom.

STEP 4: Change to the cdrom directory. Type the following command to change to the
cdrom directory:

cd /cdrom [RETURN]

STEP 5: Ensure that the Xwindow DISPLAY environment variable is set. Type the
following command to ensure that the Xwindow DISPLAY environment variable is
set:

setenv DISPLAY unix:0.0 [RETURN]

STEP 6: Ensure that Xwindow clients can connect to the display. Type the following
command to ensure that Xwindow clients can connect to the display:

xhost + [your machine name]

STEP 7: Select the items to install. Type the following command:

./install [RETURN]

The Package Selections window appears.

The following check boxes appear in the Package Selections window. Select
the items you want to install.

C TED Runtime

C TED Development

C TED Fax

C TED Locales

C TED Vision

C WinTED.

Next to each of the checkboxes is a push button that can be used to customize the
installation for that particular item.

DII.3003.IRIX62.PG-1

October 14, 199734

For example, when installing the TED runtime item, you can configure it to install
any of the following four items:

C TriTeal Enterprise Desktop

C TED Postscript manuals

C TED help

C TED manual pages.

NOTE: The TriTeal Enterprise Desktop MUST NOT be installed. This item, instead, is
installed with the kernel. If you reinstall this item, you will remove the CDE segment.

STEP 8: Install the selected items. Select the YES - Edit System Files option after
selecting all the items to install. Execute Install from the main screen.

STEP 9: Execute post install. Select the Execute Post Install option from the File
pull-down menu to execute post install.

STEP 10: Exit the menu. Select the Exit option from the File menu.

STEP 11: Remove the CD. Type the following commands to unmount and remove the CD:

cd / [RETURN]

umount /cdrom [RETURN]

DII.3003.IRIX62.PG-1

October 14, 1997 35

Appendix D - Security Manager Configuration File
The file /h/AcctGrps/SecAdm/data/config/secman_defaults contains information to set
default values and range restrictions when creating accounts and groups in Security Manager. It
contains fields in the following format:

default_profile_local:<AcctGrp>:<ProfileName>
The default local profile appears in the default profile field of the new user dialog when
creating a local account. The delivered value is set to System Admin:SA Default .

default_profile_global:<AcctGrp>:<ProfileName>
The default global profile appears in the default profile field of the new user dialog when
creating a global account. This value must be set by the system administrator after an
appropriate global profile has been defined for the system.

uid_min_local:<integer>
This defines the minimum allowed value for the numeric user ID when creating a local
account. It should never be set below 100. The delivered value is 1500.

uid_max_local:<integer>
This defines the maximum allowed value for the numeric user ID when creating a local
account. The delivered value is 2999.

gid_min_local:<integer>
This defines the minimum allowed value for the numeric group ID when creating a local
group. It should never be set below 100. The delivered value is 1500.

gid_max_local:<integer>
This defines the maximum allowed value for the numeric group ID when creating a local
group. The delivered value is 2999.

uid_min_global:<integer>
This defines the minimum allowed value for the numeric user ID when creating a global
account. It should never be set below 100. The delivered value is 3000.

uid_max_global:<integer>
This defines the maximum allowed value for the numeric user ID when creating a global
account. The delivered value is 9999.

gid_min_global:<integer>
This defines the minimum allowed value for the numeric group ID when creating a global
group. It should never be set below 100. The delivered value is 3000.

gid_max_global:<integer>
This defines the maximum allowed value for the numeric group ID when creating a global
group. The delivered value is 9999.

nis_path:<UNIX_directory_path>
This specifies the location of the NIS (YP) source files. The delivered value is
/usr/etc/yp/src.

DII.3003.IRIX62.PG-1

October 14, 199736

modify_accounts:<"true"|"false">
This determines if Security Manager has the capability to modify UNIX accounts and groups.
Security Manager will be able to modify the profile database regardless of the setting. The
value should be set to false if another account management tool is being used. The delivered
value is true.

The numeric ranges for the user ID and group ID must be defined but may overlap if necessary. A
range of group IDs probably will be reserved in the future for Account Groups and
Context-Based Directories. The minimum values for the numeric ID should not be set below 100
to avoid conflict with other essential UNIX system groups and accounts.

D.1 Character and Field Length Limits
Table 3 shows allowed character sets and numeric range limits for account, group, and profile
input fields are restricted as follows:

Accounts Restrictions

Login Name 8-character maximum length. Non-printable characters, backslashes, colons, and
spaces are not allowed. Must have at least one character. Must be unique.

Full Name 40-character maximum length. Non-printable characters, backslashes, and colons
are not allowed. Must have at least one character.

Password 10-character maximum length. Must have at least one character.

User Number Must be a positive integer meeting the range restrictions set by the Security
Manager configuration file. Must be unique.

Default Profile The field should be normally completed using the pop-up menu selection. Field
length is the combination of the account group name (20 characters), a separating
colon, and the profile name length (50 characters). Any entered value must be a
valid account group/profile name combination.

Groups

Group Name 8-character maximum length. Non-printable characters, backslashes, colons, and
spaces are not allowed. Must have at least one character. Must be unique.

Group Number Must be a positive integer meeting the range restrictions set by the Security
Manager configuration file. Group Numbers should be less than 60000 for
compatibility purposes.

Profiles

Profile Name 50-character maximum length. Non-printable characters, backslashes, and colons
are not allowed. Must be unique for the Account Group to which it belongs.

Table 3. Account, Group, and Profile Input Field Restrictions

DII.3003.IRIX62.PG-1

October 14, 1997 37

Passwords on new accounts are not restricted to the 6-character length and other character
restrictions when being created via Security Manager because it is a privileged application.
Normal users are subject to minimum password requirements when changing their passwords.

D.2 Scope Restrictions
Accounts and the profiles to which they are assigned must be of the same scope. Local accounts
may not be assigned to global profiles, nor may global accounts be assigned to local profiles.

Local and global account management also is affected by the status of NIS on the workstation. In
general, the Security Manager always can modify local accounts and profiles on the workstation
on which it is executed. If executed remotely on a NIS server and displayed on a client
workstation, the Security Manager may only modify the global accounts and profiles administered
by the NIS server. It may not modify local accounts and profiles on the NIS server in this case.
Table 4 indicates which databases the Security Manager may access, based on the workstation
type.

Local Local Global Global
Account Profile Account Profile

Standalone / /

NIS Server / / / /

NIS Client / / /

Remote* / /

Table 4. Databases a Security Manager May Access

* Security Manager is actually executed on the NIS server, with the window being displayed on the invoking
workstation's console.

D.3 UNIX System Limitations
On some systems, the number of active groups to which an account has access is limited to 16.
An account may be listed with membership in greater than 16 groups but will not be recognized as
a member of any group past the sixteenth.

DII.3003.IRIX62.PG-1

October 14, 199738

This page intentionally left blank.

